首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   24篇
  国内免费   197篇
安全科学   11篇
废物处理   6篇
环保管理   7篇
综合类   250篇
基础理论   73篇
污染及防治   44篇
评价与监测   4篇
社会与环境   7篇
  2024年   1篇
  2023年   17篇
  2022年   13篇
  2021年   25篇
  2020年   17篇
  2019年   18篇
  2018年   13篇
  2017年   17篇
  2016年   19篇
  2015年   27篇
  2014年   16篇
  2013年   23篇
  2012年   24篇
  2011年   20篇
  2010年   15篇
  2009年   25篇
  2008年   19篇
  2007年   19篇
  2006年   16篇
  2005年   14篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有402条查询结果,搜索用时 15 毫秒
51.
Haslam  Edwin 《Chemoecology》1994,5(2):89-95
Summary The distinguishing characteristics of secondary metabolism and its associated metabolites are outlined. Current theories relating to the function of secondary metabolism in plants and micro-organisms are enumerated and the view that consideration of the processes rather than the products may best explain the origins of secondary metabolism is discussed.  相似文献   
52.
Summary.  We studied the epiphytic bacterial communities of the summer leaves of eight perennial species naturally occurring in a Mediterranean ecosystem. The species differ in essential-oil content (from rich in essential oil to non-producers) and composition, and also in life form (from herbaceous species to tall shrubs). We compared the epiphytic bacterial communities on the basis of (i) their abundance, (ii) their metabolic profile (derived by use of the BIOLOG Ecoplate system) and (iii) richness and diversity of substrates that they use, as a measure of functional diversity. Among all species, the aromatic Melissa officinalis was the most abundantly colonized. The bacterial communities on the leaves of the aromatic Myrtus communis, Calamintha nepeta and Melissa officinalis, and also of Cistus incanus catabolized all 31 substrates offered; those on the evergreen-sclerophyllous species, Arbutus unedo and Quercus coccifera, catabolized only 14 and 17 substrates, respectively. Carbohydrates were consistently used abundantly by all communities, whereas carboxylic acids were most variably used. On average, the group of aromatic plants scored higher regarding bacterial abundance, and richness and diversity of substrates used by the bacterial communities on their leaves; the lowest values for both substrate-use indices were recorded in A. unedo. Bacterial abundance or richness or diversity of substrates used did not vary with leaf oil content. Abundance was positively correlated with both substrate-use indices. Results support claims that the antimicrobial effects of essential oils are not exerted so much under natural conditions as reports based on biassays with pathogens usually show. Although essential oils play a part in the microbial colonization of the phyllosphere, it is not likely that inhibition of phyllosphere bacteria is essential oils’ primary role, at least in the Mediterranean environment.  相似文献   
53.
54.
Abstract

In the present study, ethanolic extract from Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus growth and aflatoxins production were studied in relation to the expression of aflD and aflR, two key genes of aflatoxins biosynthetic pathway. Phytochemical analysis of the ethanolic extract by GC-EIMS identified affinin/spilanthol (7.84?±?0.27?mg g?1) as the most abundant compounds in H. longipes roots. The antifungal and anti-aflatoxigenic assays showed that affinin/spilanthol at 300?µg mL?1 produced the higher inhibition of radial growth (95%), as well as, the higher aflatoxins production inhibition (61%) in comparison to H. longipes roots (87% and 48%, respectively). qRT-PCR revealed that the expression of aflD and aflR genes showed a higher downregulation in affinin/spilanthol at 300?µg mL?1. The expression ratio of alfD was suppressed by affinin/spilanthol in 79% and aflR in 84%, while, a lower expression ratio suppressed by H. longipes was obtained, alfD (55%) and aflR (59%). Affinin/spilanthol possesses higher antifungal and anti-aflatoxigenic activity against A. parasiticus rather than H. longipes roots, and this anti-aflaxotigenic activity occurring via downregulation of the aflD and aflR genes. Thus, H. longipes roots and affinin/spilanthol can be considered potent antifungal agents against aflatoxigenic fungus, especially, affinin/spilanthol.  相似文献   
55.
Background Little is known about metabolism rates of environmental chemicals by vegetation. A good model compound to study the variation of rates among plant species is cyanide. Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. Knowledge of the kinetic parameters, the half-saturation constant (Km) and the maximum metabolic capacity (vmax), is very useful for enzyme characterization and biochemical purposes. The goal of this study is to find the enzyme kinetics (KM and vmax) during cyanide metabolism in the presence of Chinese vegetation, to provide quantitative data for engineered phytoremediation, and to investigate the variation of metabolic rates of plants. Methods Detached leaves (1.0 g fresh weight) from 12 species out of 9 families were kept in glass vessels with 100 mL of aqueous solution spiked with potassium cyanide at 23°C for 28 h. Four different treatment concentrations of cyanide were used, ranging from 0.44 to 7.69 mg CN/L. The disappearance of cyanide from the aqueous solution was analyzed spectrophotometrically. Realistic values of the half-saturation constant (KM) and the maximum metabolic capacity (vmax) were estimated by a computer program using non-linear regression treatments. As a comparison, Lineweaver-Burk plots were also used to estimate the kinetic parameters. Results and Discussion The values obtained for KM and vmax varied with plant species. Using non-linear regression treatments, values of vmax and KM were found in a range between 6.68 and 21.91 mg CN/kg/h and 0.90 to 3.15 mg CN/L, respectively. The highest vmax was by Chinese elder (Sambucus chinensis), followed by upright hedge-parsley (Torilis japonica). The lowest vmax was demonstrated by the hybrid willow (Salix matssudana x alba). However, the highest KM was found in the water lily (Nymphea teragona), followed by the poplar (Populus deltoides Marsh). The lowest KM was demonstrated by corn (Zea mays L.). The values of vmax were normally distributed with a mean of 13 mg CN/kg/h. Conclusions Significant removal of cyanide from aqueous solution was observed in the presence of plant materials without phytotoxicity, even at high doses of cyanide. This gives rise to the conclusion that the Chinese plant species used in this study are all able to efficiently metabolize cyanide, although with different maximum metabolic capacities. A second conclusion is that the variation of metabolism rates between species is small. All these plants had a similar KM, indicating the same enzyme is active in all plants. Recommendations and Outlook Detoxification of cyanide with trees seems to be a feasible option for cleaning soils and water contaminated with cyanide. For phytoremediation projects, screening appropriate plant species adapted to local conditions should be seriously considered. More chemicals should be investigated to find common principles of the metabolism of environmental chemicals by plants.  相似文献   
56.
白腐菌对芳香族化合物的降解途径   总被引:4,自引:0,他引:4  
白腐菌 (Whiterotfungi)是目前所发现的对芳香族化合物有很强降解能力的一类微生物。本文探讨了降解芳香族化合物的白腐菌种及其代谢化合物的主要类型 ,分析了对不同化合物的不同代谢途径 ,同时展望了其应用前景  相似文献   
57.
刘媛媛  潘纲 《环境化学》2006,25(1):6-10
水溶液中H-酸通过磺酸基团吸附在TiO2表面,UV照射TiO2所产生的自由基首先进攻吸附在TiO2表面的磺酸基团,从而进一步导致萘环开环.pH 2.5条件下,虽然饱和吸附量较大,但由于H-酸仅通过一个磺酸基团吸附在TiO2表面,过程中产生的硫酸根速率较慢,最终的光降解速率也较慢.pH 5.0条件下,虽然饱和吸附量较小,但由于吸附在TiO2表面的两个磺酸基团同时受到来自TiO2表面自由基的进攻,过程中产生的硫酸根速率较快,最终的光降解速率也较快.吸附模式的差异是导致H-酸在不同pH值条件下光催化降解途径和速率差异的关键因素.  相似文献   
58.
Anaerobic phenanthrene biodegradation enriched process was described in detail. The enriched bacterial communities were characterized under four redox conditions. The enriched archaeal communities were stated under high percentage conditions. Relatively intact pathways of anaerobic phenanthrene biodegradation were proposed. Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent contaminants worldwide, especially in environments devoid of molecular oxygen. For lack of molecular oxygen, researchers enhanced anaerobic zones PAHs biodegradation by adding sulfate, bicarbonate, nitrate, and iron. However, microbial community reports of them were limited, and information of metabolites was poor except two-ring PAH, naphthalene. Here, we reported on four phenanthrene-degrading enrichment cultures with sulfate, bicarbonate, nitrate, and iron as electron acceptors from the same initial inoculum. The high-to-low order of the anaerobic phenanthrene biodegradation rate was the nitrate-reducing conditions>sulfate-reducing conditions>methanogenic conditions>iron-reducing conditions. The dominant bacteria populations were Desulfobacteraceae, Anaerolinaceae, and Thermodesulfobiaceae under sulfate-reducing conditions; Moraxellaceae, Clostridiaceae, and Comamonadaceae under methanogenic conditions; Rhodobacteraceae, Planococcaceae, and Xanthomonadaceae under nitrate-reducing conditions; and Geobacteraceae, Carnobacteriaceae, and Anaerolinaceae under iron-reducing conditions, respectively. Principal component analysis (PCA) indicated that bacteria populations of longtime enriched cultures with four electron acceptors all obtained significant changes from original inoculum, and bacterial communities were similar under nitrate-reducing and iron-reducing conditions. Archaea accounted for a high percentage under iron-reducing and methanogenic conditions, and Methanosarcinaceae and Methanobacteriaceae, as well as Methanobacteriaceae, were the dominant archaea populations under iron-reducing and methanogenic conditions. The key steps of phenanthrene biodegradation under four reducing conditions were carboxylation, further ring system reduction, and ring cleavage.  相似文献   
59.
多环芳烃(PAHs)因其具有"三致"作用对生态系统产生潜在威胁.微生物降解是多环芳烃降解的主要途径之一,筛选出能高效降解多环芳烃的菌株是微生物修复技术的关键.本文采用富集培养的方法从多环芳烃污染的污泥中分离到1株以芘为唯一碳源的菌株LX2,经形态观察、生理生化和16S rDNA鉴定,LX2属于铜绿假单胞菌(Pseudomonas sp.LX2).菌株在含芘浓度为50 mg·L-1的无机盐液体培养基中培养21 d对芘的降解效率达32.1%.经GC-MS分析发现,Pseudomonas sp.LX2降解芘的中间代谢产物主要有4,5-二氢芘、2''-羟基苯丙酮、苯酚、原儿茶酚.基于鉴定的代谢产物得出芘通过"萘"和"邻苯二甲酸"两种不同的途径被铜绿假单胞菌(Pseudomonas sp.LX2)降解.  相似文献   
60.
采用膜生物反应器(MBR)研究了厌氧氨氧化细菌在富集过程中的活性变化,在启动全程自养脱氮(CANON)工艺中以恒定曝气量,通过优化停曝比实现氨氧化细菌(AerAOB)和厌氧氨氧化细菌(AnAOB)协同脱氮并且有效抑制亚硝酸盐氧化菌(NOB)的活性,然后添加有机物(乙酸钠)逐步启动同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)工艺.结果表明,在厌氧氨氧化细菌富集过程中,通过不断缩短水力停留时间(HRT)提高进水氮负荷的方式强化厌氧氨氧化细菌活性,其平均活性由0.603mgN/(h·gVSS)提高到了8.1mgN/(h·gVSS);当恒定曝气量为50mL/min,停曝比为4:10(min:min)时,AerAOB和AnAOB对氨氮的去除量分别占总氨氮去除量的58.8%和41.2%,NOB氧化亚硝态氮的量占总硝态氮生成量的15.3%,成功抑制了NOB的活性;当C/N比为0.5,调整停曝比为4:15后,反硝化过程氮去除量占总氮去除率的20.9%,厌氧氨氧化过程氮去除量占总氮去除率的79.1%,实现了AerAOB、AnAOB和反硝化细菌(DNB)协同脱氮的目的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号